# 时谐变电磁场

\begin{align*} \newcommand{\dif}{\mathop{}\!\mathrm{d}}\\ \newcommand{\p}{\partial}\\ \newcommand{\bd}{\boldsymbol}\\ \newcommand{\E}{\mathscr{E}}\\ \newcommand{\db}[1]{\dot{\boldsymbol{#1}}} \end{align*}

# 时谐电场的复数表示法

$E_x(\bd{r},t)=E_{xm} \cos(\omega t+\varphi_x)=\mathrm{Re}(\dot{E}_{xm}e^{j\omega t})\\ \dot{E}_{xm}=E_{xm} e^{j\varphi_x}$

$\dot{\bd{E}}_m=\hat{a}_x \dot{E}_{xm}+\hat{a}_y \dot{E}_{ym}+\hat{a}_z \dot{E}_{zm}\\ \bd{E}(\bd{r},t)=\mathrm{Re}(\dot{\bd{E}}_m e^{j\omega t})$

$\dot{\bd{E}}_m$ 称为 $\bd{E}(\bd{r},t)$ 的复振幅矢量，为了区分，称 $\bd{E}(\bd{r},t)$ 为瞬时值。复振幅矢量消去了时间分量，因此可以可以简化求导、积分运算，因为：

$\frac{\p \bd{D}}{\p t}=\frac{\p}{\p t}\mathrm{Re}(\dot{\bd{D}}_m e^{j\omega t})=\mathrm{Re} \left[ \frac{\p}{\p t}(\dot{\bd{D}}_m e^{j\omega t}) \right]=\mathrm{Re}(j\omega \dot{\bd{D}}_m e^{j\omega t})\\ \int \bd{D} \dif t=\int \mathrm{Re}(\dot{\bd{D}}_m e^{j\omega t}) \dif t = \mathrm{Re}(\int \dot{\bd{D}}_m e^{j\omega t} \dif t)= \mathrm{Re}(\frac{\dot{\bd{D}}_m e^{j\omega t}}{j\omega})$

# 麦克斯韦方程组的复数形式

$\begin{cases} \nabla \times \db{H}=\db{J}+j\omega \db{D}\\ \nabla\times\db{E}=-j\omega \db{B}\\ \nabla\cdot\db{B}=0\\ \nabla\cdot\db{D}=\db{\rho} \end{cases}$ $\begin{cases} \db{D}=\varepsilon\db{E}\\ \db{B}=\mu\db{H}\\ \db{J}=\sigma\db{E} \end{cases}$

$\nabla^2 \db{H}+k^2 \db{H}=-\nabla\times \db{J}\\ \nabla^2 \db{E}+k^2 \db{E}=j\omega \mu \db{J}+\frac{\nabla \rho}{\varepsilon} \\\ 波数：k=\omega\sqrt{\mu\varepsilon}=2\pi/\lambda$

# 坡印廷定理的复数表示

$\begin{cases} w_{e\max}=\dfrac{1}{2}\varepsilon E_m^2(\bd{r})=\dfrac{1}{2}\varepsilon \db{E}_m\cdot\db{E}_m^*\\ w_{m\max}=\dfrac{1}{2}\mu H_m^2(\bd{r})=\dfrac{1}{2}\mu \db{H}_m\cdot\db{H}_m^* \end{cases}$

$\nabla\cdot(\db{E}\times\db{H}^*)=\db{H}^*\cdot(\nabla\times\db{E})-\db{E}\cdot(\nabla\times\db{H})\\ 其中， \begin{cases} \nabla\times\db{E}=-j\omega\mu\db{H}\\ \nabla\times\db{H}=\sigma \db{E}^*-j\omega \varepsilon\db{R}^* \end{cases}$