带隙基准

$$ \begin{align*} \newcommand{\dif}{\mathop{}\!\mathrm{d}} \newcommand{\belowarrow}[1]{\mathop{#1}\limits_{\uparrow}} \newcommand{\bd}{\boldsymbol} \newcommand{\tx}{\text} \newcommand{\p}{\partial\,} \end{align*} $$

Basic Idea of Reference

集成电路中会用到很多基准电压,比如:

  1. Supply-independent biasing
  2. Proportional to absolute temperature (PTAT) reference
  3. Constant-Gm behavior reference
  4. Temperature independent reference

为啥要这么多基准呢?理想情况下,我们希望基准电压(1)不受 supply 影响;(2)不受温度影响。但遗憾的是,我们无法满足所有要求,所以只能分别满足要求。

Supply-Independent Biasing

In previous chapters of current mirrors, we has implicitly assumed that a $I_\tx{REF}$ that does not vary with $V_{DD}$ is available. In this chapter, we will discuss how to generate $I_\tx{REF}$

Figure 12.1 Current mirror biasing using (a) an ideal current source and (b) a resistor

Solution1: use a resistor (Fig. 12.1b) to generate a $I_\tx{REF} = \dfrac{V_{DD}}{R_1+1/g_{m1}}$. Obivously, it’s sensitive to $V_{DD}$, so it doesn’t work.

Solution2: make $I_\tx{REF}$ be a replica of $I_\tx{out}$ (Fig. 12.2) $I_\tx{REF}$ is bootstrapped(引导、自举)to $I_\tx{out}$, i.e. $I_\tx{out} = KI_\tx{REF}$

Figure 12.2 Simple circuit to establish supply-independent currents

How do we calculate these currents? If $M_1$–$M_4$ operate in saturation and $λ ≈ 0$, than any current is possible! To uniquely define the currents, we add another constraint to the circuit (Fig. 12.3a)

Figure 12.3 (a) Addition of RS to define the currents (b) alternative implementation eliminating body effect

$$ \begin{aligned} V_{GS1} &= V_{GS2}+I_{D2}R_S\\ \sqrt{\dfrac{2I_\tx{out}}{\mu_n C_\tx{ox}(W/L)_N}}+V_\tx{TH1} &= \sqrt{\dfrac{2I_\tx{out}}{\mu_n C_\tx{ox} K (W/L)_N}} + V_\tx{TH2} + I_\tx{out} R_S\\ &\Downarrow \tx{if } V_\tx{TH1} = V_\tx{TH2}\\ \sqrt{\dfrac{2I_\tx{out}}{\mu_n C_\tx{ox} K (W/L)_N}} \left(1 - \frac{1}{\sqrt{K}}\right) &= I_\tx{out} R_S\\ &\Downarrow\\ I_\tx{out} &= \frac{2}{\mu_n C_\tx{ox} (W/L)_N} \cdot \frac{1}{R_S^2} \left( 1 - \frac{1}{\sqrt{K}} \right)^2 \end{aligned}\\ $$

由于 the sources of $M_1$ and $M_2$ are at different voltages, 所以 $V_\tx{TH1} = V_\tx{TH2}$ 实际上会存在误差。我们可以改用 Fig. 12.2b 的电路来消除这种误差。

由于上面均忽略了 channel-length modulation,所以我们一般用长沟道来制作这部分电路,同时这也会减小 flicker noise (真不错!🥰)

但是!但是!这个电路还有一个问题!在启动时,电流为 0,所有的管子都不会打开!因此我们需要加上 $M_5$,这样就在 VDD、M3、M5、M2、GND 之间形成一条通路,就有电流啦!

Figure 12.5 (a) Addition of start-up device to the circuit of Fig. 12.3(a), and (b) illustration of degenerate point

Temperature-Independent References

If two quantities having opposite temperature coefficients (TCs), for example $V_1,V_2$, we can choose $\alpha_1,\alpha_2$ such that:

$$ \alpha_1 \frac{\p V_1}{\p T}+ \alpha_2 \frac{\p V_2}{\p T}=0 $$

so we can obtaining a reference voltage:

$$ V_\tx{REF} = \alpha_1 V_1 + \alpha_2 V_2\\ \Rightarrow \frac{\p V_\tx{REF}}{\p T} = \alpha_1 \frac{\p V_1}{\p T}+ \alpha_2 \frac{\p V_2}{\p T}=0 $$

Negative-TC Voltage

The forward voltage of a pn-junction diode (i.e. base-emitter voltage of bipolar transistors) exhibits a negative TC. 下面我们来求 $\p V_{BE}/ \p T$

The forward current of pn-junction is

$$ \begin{aligned} I_C &= I_S [\exp(V_{BE} /V_T)-1]\\ &\approx I_S \exp(V_{BE} /V_T)\\ &= I_S \exp(qV_{BE}/kT) \end{aligned}\\ \Rightarrow V_{BE} = \frac{kT}{q}\ln (I/I_S)\quad $$
  • $V_T \equiv \frac{kT}{q}$
  • The saturation current $I_S \propto \mu k T n_i^2$ (参考 半导体物理器件 2.5 与 4.9)
  • The mobility of minority carriers $\mu\propto \mu_0 T^m, m\approx -3/2$
  • The intrinsic carrier $n_i^2 \propto T^3 \exp(-E_g/kT)$

Thus,

$$ I_S = b T^{4+m} \exp \frac{-E_g}{kT}\\ b \tx{ is a prop. factor} $$

Assume that $I_C$ is held constant. Thus

$$ \frac{\p V_{BE}}{\p T} = \frac{\p V_T}{\p T} \ln \frac{I_C}{I_S} - \frac{V_T}{I_S} \frac{\p I_S}{\p T} $$

其中,第一项为

$$ \begin{aligned} \frac{\p V_T}{\p T} \ln \frac{I_C}{I_S} &= \frac{k}{q} \ln \left(\exp \frac{qV_{BE}}{kT} \right)\\ &= \frac{V_{BE}}{T} \end{aligned} $$

第二项为

$$ \begin{aligned} \frac{V_T}{I_S} \frac{\p I_S}{\p T} &= (4+m) \frac{V_T}{T} + \frac{E_g}{kT^2} V_T\\ &= \frac{(4+m)V_T+E_g/q}{T} \end{aligned} $$

总的为:

$$ \frac{\p V_{BE}}{\p T} = \frac{V_{BE}-(4+m)V_T-E_g/q}{T} $$

At $T=300\tx{K}$, $\p V_{BE}/ \p T \approx -1.5 \tx{mV/K}$

Positive-TC Voltage

If two bipolar transistors operate at unequal current densities, then the difference between their base-emitter voltages is directly proportional to the absolute temperature.

Figure 12.6 Generation ofPTAT voltage

$$ \begin{aligned} \Delta V_{BE} &= V_{BE1}-V_{BE2}\\ &= V_T \ln \frac{nI_0}{I_{S1}}-V_T \ln \frac{I_0}{I_{S2}}\\ &= V_T \ln n \end{aligned}\\ \Rightarrow \frac{\p \Delta V_{BE}}{\p T} = \frac{k}{q}\ln n $$

感觉这样有点取巧,本质上就是负负得正嘛……

Tip

Example 12.2 要使 TC=+1.5mV/K 以抵消 BE voltage 的 TC($T=300K$),那么 $n$ 要取多大?

Note

  代入 $\dfrac{k}{q} \ln n = 1.5 \tx{mV/K}$,其中 $k/q = V_T/T = 0.087 \tx{mV/K}$,得到 $\ln n \approx 17.2$,即 $n = e^{17.2} = 2.95\times 10^7$

  可见这个数很大,无法实现,所以需要修改电路。一种修改方法如下:

Figure 12.7

  修改后,右边的 $I_0$ 减小为 $\dfrac{I_0}{m}$,从而加大左右电流相对的差异,变相“增大”了 $n$。相关公式修改为:

$$ \begin{aligned} \Delta V_{BE} &= V_T \ln \frac{n I_0}{I_S} - V_T \ln \frac{I_0}{m I_S}\\ &= V_T \ln (nm) \end{aligned} $$


  但其实这还不够,后面会讨论其他方法。

Bandgap Reference

With the negative- and positive-TC voltages obtained above, we can write $V_\tx{REF} = \alpha_1 V_{BE} + \alpha_2 (V_T \ln n)$. At room temperature, $\p V_{BE}/ \p T \approx -1.5 \tx{mV/K}$, and $\p V_{T}/ \p T \approx +0.087 \tx{mV/K}$, therefore

$$ \alpha_1 \times (-1.5) = \alpha_2\ln n \times (+0.087) $$

We choose $\alpha_1=1$ so that $\alpha_2\ln n = 17.2$, indicating that for zero TC

$$ V_\tx{REF} \approx V_{BE}+17.2 V_T\\ \tx{一般基准电压为 1.25 V} $$

Let us now devise a circuit that adds $V_{BE}$ to $\Delta V_{BE}$

Figure 12.8 Conceptual generation of temperature-independent voltage

Cosider the circuit shown in Fig. 12.8, $Q_2$ 是 $n$ 个管子并联,并且我们利用某种方法使得 $V_{O1}$ 和 $V_{O2}$ 相等。那么,我们有:

$$ V_{O1} = V_{O2} = RI+V_{BE2}\\ \Rightarrow RI = V_{O1}-V_{BE2} = V_{O1}-V_{O2} = V_T \ln n\\ \Rightarrow V_{O2}=V_{BE2}+R_I = V_{BE2}+V_T \ln n $$

我们可以利用运放来使 $V_{O1}$ 和 $V_{O2}$ 相等,即:

Figure 12.9 Actual implementation of the concept shown in Fig. 12.8

$$ \begin{aligned} V_\tx{out} &= V_{BE2}+\frac{V_T \ln n}{R_3}(R_3+R_2)\\ &=V_{BE2}+(V_T \ln n)(1+\frac{R_2}{R_3}) \end{aligned} $$

根据之前的分析,$\ln n(1+\frac{R_2}{R_3})$ 大约是 $17.2$,我们可以将 $\frac{R_2}{R_3}$ 取大一点,这样 $n$ 就不会太大。

但有时候运放会存在 Offset(失调电压),即下图中的 $V_{\tx{OS}}$,此时我们的参考电压会变为:

$$ \begin{aligned} V_\tx{out} &= V_{BE2}+\frac{R_3+R_2}{R_3}(V_{BE1}-V_\tx{OS}-V_{BE2})\\ &=V_{BE2}+(1+\frac{R_2}{R_3})(V_T \ln n-V_\tx{OS}) \end{aligned} $$

Figure 12.12 Effect of op amp offset on the reference voltage

要减小 $V_\tx{OS}$ 的影响,就要增大 $V_T\ln n$,我们可以用下面的电路。注意到这个电路中有两点不同

  1. $R_2=mR_1$,这导致 $\Delta V_{BE}=V_T \ln(mn)$
  2. 下面串联了两个 BJT,这导致 $\Delta V_{BE}\times 2$

Figure 12.13 Reduction of the effect of op amp offset

从而输出为:

$$ \begin{aligned} V_\tx{out} &= V_{BE3}+V_{BE4}+\frac{R_3+R_2}{R_3}(2V_T\ln(mn))\\ &=2V_{BE}+(1+\frac{R_2}{R_3})[2V_T \ln (mn)-V_\tx{OS}] \end{aligned} $$

PTAT Current Generation